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Abstract

Draw resonance is both an important and interesting instability encountered in various extensional-defor-
mation-dominated polymer processing operations. It is important because of its paramount relevance to the
productivity and quality issue in the related industry, and it is interesting because of as yet unanswered
questions as to what its cause and origin are in terms of physics involved. Specifically, a short chronological
account of the draw resonance research is presented in this paper bringing several previous results together
and focusing on the derivation of a new criterion for draw resonance based on the interaction of the traveling
times of some kinematic waves propagating along the spinline from the die exit to the take-up position. The
new explanation of draw resonance put forward here based on the physics of the system is seen to have wide
implications on both theoretical and practical aspects of draw resonance instability. The importance of the
role played by spinline tension in determining draw resonance is an example of the former whereas inter-
pretation of the mechanism of the draw resonance eliminator is an example of the latfer. Finally, an
approximate yet a very fast and convenient method for determining draw resonance is also derived based

on the above findings and found to agree well with the exact stability results.

1. Introduction

Draw resonance is a uniquely interesting phenomenon in
many respects. First, it is easily observable in many
polymer processing operations where extensional flow and
deformation occur between the die exit and the take-up
with the imposed boundary conditions of fixed take-up
velocity. Second, it is an instability easily determinable by
traditional linear stability analysis tools. Third, it is,
however, not yet amenable to any easy interpretation
based on the physics involved as to the fundamental
nature of its origin and cause.

As regards the first two aspects above, there are plenty of
reports on the research efforts rendered toward elucidating
this phenomenon during the past four decades. Ever since
the draw resonance was first observed and aptly named as
such by Christensen (1962) and Miller (1963), there have
been many experimental observations and theoretical
attempts to explain this seemingly simple phenomenon
(Pearson and Matovich, 1969; Gelder, 1971; Donnelly and
Weinberger, 1975; Fisher and Denn, 1976; Ishihara and
Kase, 1976; White and Ide, 1978; Hyun 1978; Kase and
Araki, 1982; Lucchesi et al., 1985; Anturkar and Co, 1988,
Cain and Denn, 1988; Liu and Beris, 1988; Kim et al,
1996a, 1996b; Jung and Hyun, 1999, 1999a, etc.). The
reason for this apparent plethora is basically two-fold. On
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one side, the issue of productivity and quality which is
always of paramount importance industrially is, in many
continuous polymer processing operations like fiber spin-
ning, film casting and film blowing, profoundly influenced
by the draw resonance instability. On another side, the aca-
demic researchers' interests are usually centered on the
subjects like stability, sensitivity and optimization of the
process which draw resonance in polymer processing
operations is all about.

While experimental results on draw resonance contin-
uously had come out from the various laboratories (Don-
nelly and Weinberger, 1975; Ishihara and Kase, 1976;
White and Ide, 1978), the theoretical attempts also kept
pace starting with Japanese modeling efforts (Kase and
Matsuo, 1965) and the first stability analysis by a British
group (Pearson and Matovich, 1969) using simple New-
tonian models. Employment of linear stability analysis
after these two pioneering efforts came along beginning
with Gelder's successful results (Gelder, 1971). Interests in
draw resonance were pursued further along with modeling
on extensional flows of both Newtonian and viscoelastic
fluids. Of notable among many those research reports are
Denn et al. (1975), and Bechtel et al. (1992) being the first
and most recent successful modeling of viscoelastic fluids
for spinning, respectively, and Fisher and Denn (1976)
reporting on the stability results using the said models.
Petrie and Denn (1976) and Larson (1992) are the two
comprehensive reviews, one in 70s and the other in 90s, on
the whole gamut of polymer processing instabilities includ-
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ing draw resonance. The book by Petrie (1979) on exten-
sional flows was a timely, valuable contribution to the
research of the whole field while Petrie (1988) elucidated
many relevant, unresolved points involved in the stability
of extensional flows including those in draw resonance.

Despite all these efforts and successful endeavors toward
the research on draw resonance in terms of modeling and
stability determination, there remained the fundamental
questions still left, i.e., why the draw resonance phe-
nomenon does occur and what the physics behind is. This
is partly due to the fact that linear stability analysis only
produces the critical conditions at the onset of instability
without necessarily revealing the fundamental cause of
instability itself, and thus during the course of computation
of the eigenvalues of the stability matrix the physics of the
system as related to stability is usually lost. In an effort to
gain some understanding on the physics of the system,
investigation was carried out into the dynamic behavior of
propagating waves on the spinline which are the direct
results of the hyperbolic nature of the governing equations
of the spinning systems. Hyun (1978) elaborated the mech-
anism of how the disturbances on the spinline transmit and
repeat themselves from the take-up to the spinneret via the
spinline tension resulting in the perpetuation of draw res-
onance. Beris and Liu (1988) clearly demonstrated and
explained the hyperbolic nature of the system for spinning
and Kase and Araki (1982) showed the causality between
disturbances and process in spinning using a linear transfer
function approach. Kim et al. (1996a) derived a criterion
for draw resonance based on traveling times of waves on
the spinline. The ingenious device called draw resonance
eliminator developed by Lucchesi et al. (1985) at Union
Carbide also exploits the same kind of the idea, which
represents a shining example how industrial R & D goes
ahead of academic ones in putting basic, fundamental ideas
to work for realizing enhanced process productivity.

In this paper, we make a short chronology on draw res-
onance research along the lines described above by
bringing several previous results together to shed light
further on what kind of physics is involved in this indus-
trially and academically important phenomenon. By so
doing we also intend to provide some useful perspectives
on the practical issues of productivity and quality for the
related industrial processes.

2. Linear stability analysis

As mentioned in the previous section, conventional linear
stability analysis method was successfully applied by many
researchers to spinning processes to produce the critical
values of the drawdown ratio at the onset of draw res-
onance instability. By determining the sign and magnitude
of the largest eigenvalues of the stability matrix which is
derived linearizing governing equations and introducing
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transient perturbation to the dependent variables, we can
always find the stability/instability regions in the chosen
parameter space. In other words, as long as the model
equations of the system are available, the stability of the
system is thus readily determined. As an example, a simple

.case of stability analysis is presented in the following for

the isothermal spinning of Maxwell fluids as reported by
Jung and Hyun (1999). ‘

Continuity equation:

94,98V (1)

Equation of motion:
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Constitutive equation:
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These equations are subject to the following boundary
conditions.

A=Ay=1, V=Vy=1, 1,=1, at x=0 for all t

V=V_.=r at x=1 for all t @)
where A = dimensionless spinline cross-sectional area, V =
dimensionless spinline velocity, 1T,, = dimensionless spinline
axial stress, T, = dimensionless spinline radial stress, x =
dimensionless distance coordinate from the spinneret, t =
dimensionless time, g = dimensionless reciprocal axial force,
De = Deborah number, a = parameter representing the strain-
rate dependency of material relaxation times, r = drawdown
ratio. Subscripts 0, L denote spinneret and take-up condi-
tions, respectively.

At time t = 0", disturbances are introduced to the system
with all other conditions held the same.

In the above, several assumptions have been incorpo-
rated. First, the variations of variables across the spinline
cross-section are neglected to result in an one-dimensional
model for the system. Second, the origin of the spinning
distance coordinate is chosen at the die (extrudate) swell
position ignoring the pre-spinneret conditions on the spin-
line. Third, all the secondary forces on the spinline, i.e.,
gravity, air drag, surface tension and inertia are neglected.

Now transient perturbations are introduced to the depen-
dent variables as follows.

A, X) = A(X) + ox)e™, " V(t, X) = V(x) + B(x)e™
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Fig. 1. Stability diagrams of various convected Maxwell fluids by
linear stability method.

Te(ty X) = Ty o(X) + Y(x)E™
Tealt, X) = Tolt, X) = (Tyy o(X)-Tr o(0)) + (X)X ®)

where, the subscripts S indicates steady state, and o, B, Y and
8 are the perturbed quantities, and Q is a complex ei-
genvalue that accounts for the growth rate of the pertur-
bation.

The stability diagram in Fig. 1 has been recalculated
from Jung and Hyun (1999) where the detailed derivation
was explained for the linear stability analysis. The same
analysis can of course be performed for other more com-
plex spinning systems. For example, the cases of secondary
forces included, nonisothermal spinning and other con-
stitutive equations could be similarly dealt with to yield
similar stability results. It can be reiterated here that the lin-
ear stability analysis readily produces the stability results
as long as the proper governing equations of the system are
available for linearization and perturbations. The remaining
questions are, however, why this draw resonance instability
does occur and what physics is involved to cause it.

3. Physics behind the draw resonance phenomenon

In an effort to shed some light on the physics involved in
causing draw resonance in fixed take-up velocity spinning,
transient simulation was performed on the system to produce
pictures showing transient behavior of the spinline vari-
ables as depicted in Fig. 2. The three dimensional transient
pictures of the spinline cross-sectional area (A) wave and
the throughput (AV) wave of the case of Fig. 2 are shown
in Figs. 3 and 4, respectively. Due to the hyperbolic nature
of the governing equations of the system described by Egs.
(1)~(4), any disturbances tend to propagate in the form of
waves along the spinline as the fluid elements travel from
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Fig. 2. Transient behavior of spinline variables of Maxwell fluid

at five different spatial positions of the spinline when a =
04, De=0.019, r=rc=27.97.
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Fig. 3. Three-dimensional transient picture of the spinline cross-
sectional area (A) wave.

the spinneret to the take-up. Also since the take-up velocity
is maintained at a fixed value, any disturbance waves
continuously generate another waves at the spinneret as
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.
Fig. 4. Three-dimensional transient picture of the throughput (AV)
wave.

soon as they exit the system through the take-up position.
Here the important linkage which makes possible con-
tinuous generation of the waves is the spinline tension
which transmits the conditions at the take-up to the spin-
neret in an instantaneous fashion for Newtonian fluids
spinning and with a small delay for viscoelastic fluids
spinning. In other words, as one wave goes out of the
system through the take-up, another similar wave (of dif-
ferent sign of magnitude) immediately appears at the
spinneret and begins traveling toward the take-up. This
process repeats itself to result in the perpetuation of draw
resonance phenomenon. The magnitude of oscillations dies
out with time in stable situations whereas it reaches the
steady levels of limit cycles in unstable situations. The
explanations along this line was also presented by Kim et
al. (1996a), Jung and Hyun (1999), Jung et al. (1999a), and
Jung et al. (1999b).

This is the physical picture of draw resonance in which
nonlinear oscillation of spinline variables such as cross-
sectional area, tension and throughput evolves with time. It
was found by Hyun (1978) that the hyperbolic nature of the
continuity equation of spinning process causes throughput
waves to travel the spinline. Particularly, among them the
unity throughput waves travel the entire spinning distance
from the spinneret to the take-up and play a key role in
deciding the onset conditions of draw resonance as shown
by Kim et al. (1996a) where other waves were also found
to travel on the spinline with their uniquely different
traveling velocities.

4. Criterion for draw resonance
As explained above, there are many different traveling
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times corresponding to different waves in the system. Now
we seek to find some relationships among these traveling
times in connection with the onset of draw resonance. It
was found by Kim er al. (1996a) that the following
important relationship exists among these different trav-
eling times and the sign of the inequality changes accord-
ing as the stability of the system changes.

(- At + T/4 + (tp - At), + T/42 [0 - At]; + [0 - Atl, = T,

or (t) +(t)+T22 (0L, +(BL),, forr<rc ©)
where, t, = dimensionless traveling time of unity-throughput
waves from the spinneret to the take-up, At = dimensionless
time (phase) differences between the spinline tension curve
and spinline area curve at the take-up, T = dimensionless
period of oscillation, 6; = dimensionless traveling time of
maximum area or minimum area waves from node 1 to the
take-up, and r¢ = critical drawdown ratio at the onset of
draw resonance.

The onset case of draw resonance of Fig. 2 is redrawn in
Fig. 5 where the relation of Eq. (6) is readily seen.

This relation is thus the criterion for draw resonance
where the equality represents the case of the onset of draw
resonance. Fig. 6 clearly shows this criterion for draw
resonance for the spinning case of Eqgs. (1)-(4) which is in
exact agreement with the values obtained by the linear
stability analysis method.

Interpretation of this criterion of draw resonance is as
follows. The left hand side of Eq. (6) is the required time
for two successive unity throughput waves (with a pause
time of T/4 in between) to be able to travel from the
spinneret to the take-up whereas the right hand side is the
time for two successive peak and trough cross-sectional
area waves travel the same spinning distance. This right
hand side is also equal to the period of oscillation. What
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Fig. 5. Contours of constant-AV curves when a = 0.4, De = 0.019,
r=rc=2797.
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Fig. 6. Comparison of traveling times of throughput waves and
cross-sectional area waves as plotted against the draw-
down ratio.

Eq. (6) says is that if the drawdown ratio is smaller than its
critical value, i.e., stable situations, the required time for
waves on the left side becomes greater than the allowed
time by the two peak area waves on the right side, which
makes sustained oscillation impossible. When the draw-
down ratio is at the critical value, these two times of the
left and right sides become equal to each other just
enabling to sustain steady oscillation. If the drawdown
ratio becomes larger than its critical value, the required
time is always smaller than the allowed time so that steady
sustained oscillation of draw resonance is possible.

The criterion for draw resonance represented by Eq. (6)
thus clearly determines when the onset of draw resonance
actually occurs. This is a hydrodynamic condition for the
spinning system and thus applies to any process conditions
involving various constitutive equations and spinline cooling
conditions. In other words, graphs similar to Fig. 6 are
always possible for any spinning systems to determine the
occurrence of draw resonance as the drawdown ratio is
increased from the stable to unstable ranges.

5. Approximate method for stability determination

There is another utility for the draw resonance criterion
of Eq. (6). As Jung et al. (1999a) explained, Eq. (6) can be
approximated using the fluid element traveling time, i.e.,
fluid residence time on the spinline and an approximate
throughput traveling times. Putting together these two
approximate times for Eq. (6), Jung et al. (1999a) came up
with an approximate criterion for draw resonance as shown

in Eq. (7).
Inr
225, )
where, T, = dimensionless traveling time of fluid elements
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from the spinneret to the take-up, i.e., fluid residence time
on the spinline.

The utility of this approximate criterion for determining
the onset of draw resonance is rather great because using
this criterion, we don't need to solve the transient differ-
ential equations of the system, but rather use steady state
solution only which is easily obtained. As for the question
of how accurate this approximation is, Jung et al. (1999a)
and Kim et al. (1996b) showed that the agreement is
qualitatively good for film casting, film blowing, and fiber
spinning, respectively. Figs. 7, 8 and 9 show the examples
of these fiber spinning, film casting and film blowing cases,
respectively, where the results by this approximate method
are compared with the exact results recalculated by linear
stability analysis method of Jung and Hyun (1999), Anturkar
and Co (1988), and Cain and Denn (1988), respectively.

6. Perspectives and Conclusions

So far we have presented a new criterion for draw
resonance based on the traveling times of spinline waves
contributing to a better understanding of the phenomenon
in terms of its cause and mechanism. The results can be
applied to any extensional deformation processes such as
fiber spinning, film casting and film blowing to improve
their industrially important process. productivity and
product quality. The subjects like stability, sensitivity and
optimization can also be tackled for these processes using
the same concept. For example, the effects of various
process conditions including fluid properties on draw
resonance can be analyzed for the benefits of process
productivity improvement. Specifically, the effects of
process conditions which have not been considered in this
paper such as spinline secondary forces, spinline cooling,
and fluid viscoelasticity, etc. on the dynamics of the process
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Fig. 7. Comparison of stability results between the exact and
approximate methods for fiber spinnning process.
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including draw resonance can be easily studied, e.g., Jung
et al. (1999¢), following the procedure described here. By

~ doing so, we can delve into many important subjects of the
process dynamics surrounding draw resonance as expounded
by Petrie (1988).
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