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Abstract

Three-dimensional flow analysis was performed by using the control volume finite-element method for
design of a profile extrusion die. Because polymer melt behavior is complicated and cross-sectional shape
of the profile extrusion die is changing continuously, the fluid flow within the die must be analyzed three-
dimensionally. A commercially available polypropylene is used for theoretical and experimental inves-
tigations. Material properties are assumed to be constant except for the viscosity. The S-constant modified
Cross model is used for the numerical analysis. A test problem is examined in order to verify the accuracy
of the numerical method. Simulations are performed for conditions of three different screw speeds and three
different die temperatures. Predicted pressure distribution is compared with the experimental measurements
and the results of the previous two-dimensional study. The computational results obtained by using three
dimensional CVFEM agree with the experimental measurements and are more accurate than those obtained
by using the two-dimensional cross-sectional method. The velocity profiles and the temperature dis-
tributions within several cross-sections of the die are given as contour plots.

Keywords : profile extrusion die, CVFEM, 5-constant modified Cross model, three-dimensional numerical

simulation

1. Introduction

Extrusion is one of the main processing methods for pro-
duction of thermoplastic parts. It is used to manufacture
pipes, films, fibers, cables, wires, and various continuous
profiles. It has an advantage because products are made
continuously with lower cost. The screw and extrusion die
are the most important parts in the extruder. This study
concentrated on melt flow within the die channel for under-
standing of flow behavior in a profile extrusion die.

Design of a satisfactory extrusion die is a difficult and
critical matter. Although some principles are well estab-
lished and the behavior of polymer melts in constricted
channels is understood deeply, there remains a problem of
design and construction that relies on experience and art
(Morton-Jones, 1989). The profiling of the transition zone
is an important problem in the design of profile extrusion
dies. The undesirable change in geometry may result in the
stagnation of polymer melts. Large residence times by
stagnation may lead to thermal degradation of the polymer
melt and this can create defects in the final product.
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For a good design of the die, flow distribution within the
die channel must be identified for a given geometry.
Because the polymer melt behavior is not simple and the
cross-sectional shape of the die is quite complex, numerical
simulations have been used for design of the extrusion die.
There are many studies where various numerical analyses
are carried out for the design of the profile extrusion die. In
the case of two dimensional numerical simulation, the flow
analysis network (FAN) method that is based on analytical
calculation of the pressure drop and flow rate has been pro-
posed (Tadmor and Broyer, 1974; Lee, 1990), and the
cross-sectional method, which considered two dimensional
cross sections perpendicular to the flow direction, has been
performed (Hurez and Tanguy, 1993; Seo and Youn, 2000).
Three dimensional numerical analysis is recently proposed
for better precision (Baliga and Patankar, 1988; Kihara et
al., 1999; Lee and Yang, 2000).

Because the polymer melt has low thermal conductivity,
the convective contribution is predominant in the flow.
Conventional Galerkin finite element methods could pro-
duce oscillatory solutions at high Peclet numbers. When
the convection term is larger than the diffusion term in the
momentum equation or energy equation, unrealistic solu-
tions could be obtained. To overcome physically unrealistic
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oscillatory solutions, several upwind type finite element
methods have been proposed. Heinrich ez al. (1977), Huy-
akorn (1977), Hughes et al. (1979), and Baliga and Patan-
kar (1980) proposed upwind type finite element methods
for convection diffusion problems. Swaminatha and Voller
(1992) compared the streamline upwind Petrov Galerkin
(SUPG) finite element approach with the streamline
upwind control volume (SUCV) finite element method.
The basic concept of the SUPG approach was extended to
the control volume finite element method.

In this study, three dimensional numerical simulation
using the control volume finite element method (CVFEM)
is proposed. Baliga and Patankar (1980 and 1983) intro-
duced CVFEM for incompressible fluid in an effort to
combine the desirable features of CVFDM and FEM.
CVFEMs complement and enhance the conventional
Galerkin finite element methods. Prakash (1986) and
Hookey and Baliga (1988) have proposed CVFEM for
incompressible fluid flow.

CVFEM is a general numerical method for the solution
of convection diffusion problems. CVFEM can handle
irregular shaped and multiply connected domains and can
give accurate solutions over all range of Peclet numbers.
The purpose of the convection-diffusion problem is to
obtain the distribution of a scalar quantity in the presence
of a fluid flow. The scalar quantity is convected with the
flow and diffused by its gradients. Therefore, the calcu-
lation of the fluid flow must be formerly considered for
solving of the convection-diffusion problem. In CVFEM,
the shape function is exponential in the direction of the
average velocity vector and linear in the normal direction
over each element. As this exponential shape function is
used, the solution in convection diffusion problem can
avoid the physically unrealistic oscillation and false dif-
fusion. To avoid a checker-board pressure problem, two
methods are used in CVFEM. in one method, velocity
components are computed at all the grid points in the
domain and pressure is computed at much fewer grid
points. In the other method, velocity and pressure are com-
puted at all the grid points in the domain by using the par-
ticular shape function which accounts explicitly for the
source terms. The latter method is used in this study.

As the viscosity of polymer melt is sensitive to tem-
perature, the temperature distribution within the die needs
to be calculated. To determine the boundary conditions for
solving the temperature field in the polymer melt, the tem-
perature distribution in the solid die is calculated. Con-
sidering the extrusion head and the die as a cylinder, three
dimensional heat transfer problem is changed into two
dimensional numerical problem (Seo and Youn, 2000). The
modified Cross model is used as the viscosity model.
Because the pressure difference within the die is small,
effect of pressure on the viscosity is neglected. Four con-
stants of the modified Cross model were determined to fit
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the data obtained by RMS (Rheometric Mechanical Spec-
trometer). To verify the computer code, a test problem that
has a known solution is solved by the CVFEM. The sim-
ulation results of the fluid flow within the die are compared
with the experimental results and the two dimensional sim-
ulation results reported by Seo and Youn (2000).

2. Theoretical modeling

In the profile extrusion die, the cross-sectional shape is
changing continuously and three dimensional computation
will yield more accurate prediction than two dimensional
analysis. For three dimensional numerical simulation, gov-
erning equations are shown in this section and the method
for the calculation of the temperature distribution in the
solid die is explained. To solve the energy equation for the
fluid flow within the die, the wall boundary conditions are
required.

2.1. Governing equations
In order to predict the fluid flow of polymer melt within
the die, following assumptions were made.
1. The polymer melt is an incompressible Generalized
Newtonian Fluid (GNF).
2. The gravitational force is neglected.
3. The flow within the die is in steady state.
4. Creeping flow is assumed within the die because the
inertia force is much smaller than the viscous force.
In the Cartesian coordinate system, the fluid flow and
heat transfer problems are governed by the following dif-
ferential equations.

continuity equation:
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In the above equations, p is the density of the fluid, C, heat
capacity, 7 viscosity of the fluid, k thermal conductivity, p
hydraulic pressure, T temperature, and «, v, and w are the
velocity components in x, y, and z directions.

The constitutive equation is important to obtain the
acceptable numerical result and the modified Cross model
was selected. The 5-constant model is described as follows:

T.
L+(nyy/ %)
T,
(T, ) = Bexa( 32 Jexp(Bp) ™

where t#, B, T}, B and n are the model parameters, 1, zero
shear viscosity and y the shear rate defined as follows:

Y= (B2 ®
5’:’1‘ =V itV )]

2.2. Temperature distribution in the solid die

When the energy equation (5) is calculated, boundary
conditions at the solid wall should be known. The tem-
perature distribution in the solid die was calculated by the
finite element method. For the accurate calculation, a three
dimensional heat transfer problem must be considered.
However, since the die was assumed as a cylinder, it
became a two dimensional heat transfer problem (Fig. 1).
To compute the temperature in the solid die, the temper-
ature in the extruder head must be considered because the
temperature of extruder head affects the temperature dis-
tribution in the solid die. When the temperature distribution
in the solid die was calculated, the following assumptions
were used.

1. Nothing is attached to the solid die.

|, —— Free convection
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Fig. 1. Schematic diagram of the die head and die channel.
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2. The polymer melt within the die is stationary.

3. The heat supply from the heater is continuous.

In practice, the heater, regularly supplying the heat, is
attached to the solid die and the polymer melt advances
due to pressure gradient in the die. By using the above
assumptions, the heat conduction equation was taken into
account for the solution. Details for the calculation of tem-
perature distribution in the solid die are described by the
previous study (Seo and Youn, 2000).

3. Numerical analysis

3.1. Control volume finite element method

Control volume finite element method has been used for
three dimensional heat transfer and fluid flow problems
(Baliga and Patankar, 1988). In numerical methods based
on the formulation of primitive variables, the resulting dis-
cretization equations could admit checkerboard type pres-
sure fields, if the velocity components and pressure are
stored at the same grid points and interpolated by similar
functions. To avoid this difficulty, an unequal-order
CVFEM (Baliga and Patankar, 1983) and an equal-order
CVFEM (Prakash, 1986) have been proposed. The present
study is based on the latter suggested by Prakash.

3.1.1. Domain discretization

The four noded tetrahedron is used as a basic discretized
element. After the discretization of the calculation domain
with four-node tetrahedral elements, each node is associ-
ated with a polyhedral control volume generated as fol-
lows. The center of each tetrahedral element is first joined
by straight lines to the center of the four triangular surfaces
that make the tetrahedron. Then, straight lines to the mid-
points of the corresponding sides join the center of each tri-
angular surface. This procedure generates six quadrilateral
planar surfaces within each tetrahedral element. The sur-
faces divide the tetrahedral element into four equal, but not
necessarily similar shaped, volumes as shown in Fig. 2.

3.1.2. Control volume conservation equations

Steady, three dimensional, elliptic convection diffusion
phenomena are governed by differential equations that can
be cast in the following general form.

divJ) = S, (10)
J=pvo-T,V9 (11)

where ¢ is a general scalar dependent variable, p the mass
density, v the fluid velocity vector, I', the diffusion coef-
ficient, S, the volumetric source term, and J the combined
convection and diffusion flux of ¢.

An integral formulation corresponding to equation (10)
can be obtained by applying the conservation principle for
¢ to a control volume V, which is fixed in space. The
resulting integral conservation equation, when applied to
the polyhedral control volume surrounding the node 1 of
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When the energy equation (5) is calculated, boundary
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perature distribution in the solid die was calculated by the
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To compute the temperature in the solid die, the temper-
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2. The polymer melt within the die is stationary.

3. The heat supply from the heater is continuous.

In practice, the heater, regularly supplying the heat, is
attached to the solid die and the polymer melt advances
due to pressure gradient in the die. By using the above
assumptions, the heat conduction equation was taken into
account for the solution. Details for the calculation of tem-
perature distribution in the solid die are described by the
previous study (Seo and Youn, 2000).

3. Numerical analysis

3.1. Control volume finite element method

Control volume finite element method has been used for
three dimensional heat transfer and fluid flow problems
(Baliga and Patankar, 1988). In numerical methods based
on the formulation of primitive variables, the resulting dis-
cretization equations could admit checkerboard type pres-
sure fields, if the velocity components and pressure are
stored at the same grid points and interpolated by similar
functions. To avoid this difficulty, an unequal-order
CVFEM (Baliga and Patankar, 1983) and an equal-order
CVFEM (Prakash, 1986) have been proposed. The present
study is based on the latter suggested by Prakash.

3.1.1. Domain discretization

The four noded tetrahedron is used as a basic discretized
element. After the discretization of the calculation domain
with four-node tetrahedral elements, each node is associ-
ated with a polyhedral control volume generated as fol-
lows. The center of each tetrahedral element is first joined
by straight lines to the center of the four triangular surfaces
that make the tetrahedron. Then, straight lines to the mid-
points of the corresponding sides join the center of each tri-
angular surface. This procedure generates six quadrilateral
planar surfaces within each tetrahedral element. The sur-
faces divide the tetrahedral element into four equal, but not
necessarily similar shaped, volumes as shown in Fig. 2.

3.1.2. Control volume conservation equations

Steady, three dimensional, elliptic convection diffusion
phenomena are governed by differential equations that can
be cast in the following general form.

divJ) = S, (10)
J=pvo-T,V9 (11)

where ¢ is a general scalar dependent variable, p the mass
density, v the fluid velocity vector, I', the diffusion coef-
ficient, S, the volumetric source term, and J the combined
convection and diffusion flux of ¢.

An integral formulation corresponding to equation (10)
can be obtained by applying the conservation principle for
¢ to a control volume V, which is fixed in space. The
resulting integral conservation equation, when applied to
the polyhedral control volume surrounding the node 1 of
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/ Vav

Fig. 2, Division of a tetrahedral element into portions of poly-
hedral control volumes and local flow-oriented X, ¥, Z and
global x, y, z coordinate systems.

the tetrahedral element shown in Fig. 2, can be expressed
in the following form.

[Ialas J-n ds+.[clar J-n ds+jdmr-"" ds—.[atcd.mr S¢dv]

+ [similar contributions from other elements
associated with node 1]
+[boundary contributions, if applicable]=0 (12)

The integral equation that expresses the momentum con-
servation equations and energy balance equation can be
obtained from equation (12).

The integral mass conservation equation is also imposed
on the polyhedral control volumes. This equation can be
written as follows. .

ansPV’n ds+J’c,,,,pv'n ds+Idxorpv'n ds]

+ [similar contributions from other elements
associated with node 1]
+[boundary contributions, if applicable]=0 (13)

The source term and pressure is interpolated linearly in
each element. The interpolation function is defined with
respect to a local flow-oriented Cartesian coordinate sys-
tem (X, Y, Z), shown in Fig. 2. Algebraic approximations of
the internal contributions and boundary contributions are
derived for all elements in the calculation domain. When
approximations of the contributions from all the elements
associated with a typical node i are substituted into equa-
tion (12), the corresponding discretization equation is
obtained. This equation can be expressed in the following
general form:

100

at: = Yale,+bf (14)

where the summation is taken over all neighbors of node i.
When the value of ¢ at a node i is specified the corre-
sponding discretization equation becomes the following
trivial form like a specified boundary condition:

¢i = ¢sp¢a'ﬁed (15)

Details of the derivations are given in the reference
(Baliga and Patankar, 1988).

3.2. Formulation for the flow within the die

3.2.1. Formulation for the fluid flow

The fluid flow problem is governed by the momentum
equations (2) to (4). Because the fluid flow is assumed as
the creeping flow, the convection term is neglected. There-
fore, the fluid flow is three-dimensional conduction type
problem (Baliga and Patankar, 1988). For the conduction
type problem, the general form of flux is written as the fol-
lowing form:

J=-T,V¢ (16)

For the momentum equations, the flux and the source is
expressed as the following form:

For x-momentum equation

U, (v Ju), (dw Ou
J ‘Z“ax“”(ax*ay)’ "’(ax+az

u_ dp
s =2 an

For y-momentum equation
e (U ) 5 Qv (Ow oy
'“"(ay’“ax}‘”’ay"”(ay*az

v
§'=-% (18)

For z-momentum equation

_ o fdu. ow). (v ow). ., gw
__n(8z+8x '"(az*ay)’"z"az"
5 =22 (19)

Tz

where the pressure gradient is considered as the source and
the viscosity, 77 is calculated by equations (6), (7), and (10).
As the convection term is neglected, the global Cartesian
coordinate system (x, y, z) is used instead of the local flow
oriented Cartesian coordinate system (X, ¥, Z) for the inter-
polation function. Then, the interpolation functions are
given as follows:

u=A"x+B"y+C'z2+D"- " g’i [x—ﬁ(y%zz)] (20)
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w=A"x+B"y+ C"'z+D”'—'7l7 f{zz [z—i(x2+y2)] (22)

The equations (20) to (22) satisfy the equations (2) to (4),
respectively.

Using Gaussian quadrature approximation, the resulting
u, v, and w discretization equations for node i can be
expressed as follows:

at u;= Say u,+di+ Q4 p, (23)
al v= Ty v, +di+ S p, (24)
arw,; = Za;’,‘ W"+dr'+zgr‘r P (25)

Using guessed values of u, v, w, and p, or values from a
previous cycle of an iterative solution procedure, the coef-
ficients in equations (23) to (25) can be calculated, and
these equations can be solved to obtain new values of u, v,
and w using the SIMPLEC procedure (Baliga and Patan-
kar, 1983).

3.2.2. Formulation for the heat transfer

The heat transfer problem is governed by the equation
(5). Because the problem is a convection-diffusion type, the
local flow oriented Cartesian coordinate (X, Y, Z) is used.
With the equations (5), (10), and (11), the heat flux and the
source term can be expressed as follows:

J= (pC,,UT—k grx '+(pC,,VT—k g '+(pC,,WT—k gg

sy=an ) a5y (5] + () +n(5)

() (&) en(5) %)
UGV, VW, JUIW 26)

*2Msvaxt Moz oy Tz ox

+2n

An interpolation function for temperature must satisfy
the convection diffusion equation, respond appropriately to
the direction of V,, represent the value of the element
based Peclet number, and account for the influence of the
source term explicitly. The temperature interpolation func-
tion is given by the following;

_ATe nT T 7 X  1-IN
T=A"E+B'Y+C'Z+D +S'{NpC,,U,,V_ m (Y2+Zz)}

27
Using Gaussian quadrature, the resulting temperature dis-
cretization equations for node i can be expressed as fol-

lows;
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alT;=YalT,+b] (28)

where the summation is taken over all neighbors of node i.

In the iterative solution of the algebraic equations, it is
often desirable to slow down the changes, from iteration to
iteration, in the values of the dependent variable (Patankar,
1980). This process is called underrelaxation. Underrelax-
ation is a very useful device for nonlinear problems. It may
be employed to avoid divergence in the iterative solution
and was used for solving the discretization equations (23),
(24), (25), and (28). The procedure for numerical simu-
lation is shown succinctly in Fig. 3.

3.3. Test problem

To verify the computer built code used for the numerical
analysis, a test problem was performed. Flow of a New-
tonian fluid within a circular cylinder was used as the test
problem. Considering the geometrical symmetry, a quarter
of the cylinder cross-section was used for the numerical
analysis. Because an exact analytical solution exists for this
problem, the validation of the code can be made by com-
paring the numerical solution with the exact solution.
When the pressure difference is fixed, the pressure along
the flow direction is shown in Fig. 4 and the velocity for
the flow direction along the radius is shown in Fig. 5. The
solid line indicates the results of the numerical analysis and
the dashed line indicates the analytical solution in Figs. 4
and 5. There is a good agreement between the numerical
results and the analytical solution. Maximum error in the
velocity distribution is only 2%. In the case of the pressure
distri-bution, the error is quite small.

4, Results and discussion

A commercial polypropylene was used as the material
for the numerical analysis and experimental investigations.
Material properties are given in Table 1. Constants of the
viscosity model are given in the reference (Seo and Youn,
2000). Because the shear rate was low for the flow in the
profile extrusion die, RMS was used for the measurement
of the viscosity. In the range of shear rate for the profile
extrusion, the viscosity predicted by the S-constant mod-
ified Cross model shows a good agreement with the exper-
imental data.

The geometry of the L-shape profile extrusion die used
for the simulation and the experiment is shown in Fig. 6(a)
and a part of the three dimensional finite element mesh is
presented in Fig. 6(b). In order to compare the experi-
mental results with the previous work, the conditions of the
study by Seo and Youn (2000) were used for the simu-
lation. For the screw speed, 30, 60, and 90 rpm were used,
and for the die temperature, 453, 473, and 493 K were
used. The head temperature was assumed to be 473 K. A
total of 2406 nodes and 10729 elements were used for the
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Fig. 3. Flow chart for the numerical calculation.

256+5
208+ - —— CVFEM
---- Analytic solution
15645 -
®
Qa
Nt
o
5 1.0e+$ 4
[723
(%23
o
O 5pevd
00 -
0.00 001 002 003 004 0.08 0.08
x-axis (m)

Fig. 4. Pressure variation of the polymer melts along the die
channel for the test problem.

die. The flow rate does not depend on the temperature but
is dependent on the screw speed. According to the results
by Seo and Youn (2000), it can be known that the flow rate
linearly changes with respect to the screw speed.
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Fig. 5. Variation of the x-direction velocity as a function of the
radius for the test problem.

Table 1. Material properties and five constants of the viscosity

model
) PP (Hopelen)

Density (kg/m”) 770
Heat capacity (J/kg - K) 3060
Heat conductivity (W/m - K) 0.151
n 0.342

T (Pa) 7.52E+3

B (Pa-s) 2.36E-2

7, (K) 5.236E+3

B Pa') 1.5E-8

It was assumed that the flow in the inlet of the head
was fully developed. At the wall boundary, non-slip con-
dition was used for the velocity and isothermal condition
was used for the temperature. The pressure difference
between the inlet and the outlet was assumed as an arbi-
trary value at first, and then the flow rate was calculated
by the numerical results obtained from the pressure dif-
ference. This process was repeated until the calculated
flow rate was equal to the experimentally measured flow
rate. To compare the experimental data with the simu-
lation results in each condition, the pressure profiles
along the flow direction were compared. The pressure at
the outlet was considered to be zero. The location of
each pressure sensor in the experiment is shown in Fig,
6(a).

When the flow rate is 1.24 g/s, the pressure profiles at
different die temperatures are shown in Figs. 7 to 9. In
Figs. 7 to 9, two numerical results, i.e., numerical pre-
dictions by using three-dimensional CVFEM and by using
two dimensional cross-sectional method are plotted and
compared with the experimental results. It is clear that the
pressure difference is smaller as the die temperature is
increased.
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Fig. 6. (a) Geometry of the L-shape profile extrusion die.
(b) A part of the computational mesh

Figs. 8, 10, and 11 show that the flow rate affects pres-
sure difference. As expected, the pressure difference is
larger as the flow rate is increased. The simulation results
obtained by using three dimensional CVFEM agree well
with the experimental measurements and are more accurate
than those obtained by using two dimensional cross-sec-
tional method.

The velocity and the temperature profiles in some cross-
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Fig. 7. Pressure variation of the polymer melt along the boundary
of the channel in the case of die temperature at 453 K and
flow rate of 1.24 g/s.
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Fig. 8. Pressure variation of the polymer melt along the boundary

of the channel in the case of die temperature at 473 K and
flow rate of 1.24 g/s.

sections of the die are shown in Figs. 12 to 16. When the
flow rate is 1.24 g/s and the die temperature is 473 K, the
velocity and the temperature distributions in some cross-
sections are obtained. In this case, the temperature dis-
tribution along x-axis at the wall boundary is shown in Fig.
12. The velocity and the temperature distributions at 0.095,
0.120, 0.155, and 0.195 m along x-axis are shown in Figs.
13 to 16.

In the case of the symmetric cross-sections as shown in
Figs. 13 and 14, the shape of velocity profile is symmetric.
But, in the case of asymmetrically shaped cross-sections as
shown in Figs. 15 and 16, temperature distributions are
rather complex. Because the velocity gradient is small in the
die channel, the temperature rise by viscous heating is small
and the wall temperature will mainly affect the temperature
of the fluid. Therefore, the wall temperature of the solid die
must be predicted accurately for calculation of the precise
temperature distribution.
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Fig. 9. Pressure variation of the polymer melt along the boundary
of the channel in the case of die temperature at 493 K and
flow rate of 1.24 gfs.
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Fig. 10. Pressure variation of the polymer melt along the bound-

ary of the channel in the case of die temperature at 473 K
and flow rate of 0.84 g/s.
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Fig. 11. Pressure variation of the polymer melt along the bound-

ary of the channel in the case of die temperature at 473 K
N and flow rate of 1.64 g/s.
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Fig. 12. Temperature distribution at the wall boundary along the
die channel.
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Fig. 13. Contour plots for die temperature of 473 K and flow rate
of 1.24 g/s at x=0.095 m: (a) x-directional velocity (m/s)
and (b) temperature (K).

5. Conclusions

The velocity, pressure, and temperature distributions of
the fluid flow within the profile extrusion die are calculated
by using a three dimensional control volume finite element
method. An equal order CVFEM for three dimensional
fluid flow problem and a CVFEM for three dimensional
heat convection diffusion problem considering viscous
heating are formulated. Three dimensional non-isothermal
numerical calculation is performed for different screw
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Fig. 14. Contour plots for die temperature of 473 K and flow rate
of 1.24 g/s at x=0.120 m: (a) x-directional velocity (m/s)
and (b) temperature (K).

speeds and at different die temperatures. Pressure differ-
ence in the die becomes larger as the screw speed is
increased, but smaller as the die temperature is increased.
Pressure distributions given by the numerical calculations
are compared with the experimental measurements and the
two-dimensional numerical results for the same profile
extrusion die. Simulation results obtained by the three
dimensional CVFEM agree well with the experimental
results and are more accurate than those obtained by using
two dimensional cross-sectional method. Velocity profiles

Korea-Australia Rheology Journal
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Fig. 15. Contour plots for die temperature of 473 K and flow rate

of 1.24 g/s at x=0.155 m: (a) x-directional velocity (m/s)
and (b) temperature (K).

in x direction and temperature distributions at several cross-
sections perpendicular to x-axis are given as the contour
plots. The results can be utilized for design of the extrusion
die and study of the extrudate swell.
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Fig. 16. Contour plots for die temperature of 473 K and flow rate

of 1.24 g/s at x=0.195 m: (a) x-directional velocity (m/s)
and (b) temperature (K).
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